In Vitro Effects of rhDNase on Sputum Rheology in Cystic Fibrosis Patients

Étienne Ghiringhelli,¹ Matthieu Robert de Saint Vincent,¹ Jérémy Patarin,¹ Stéphane Mazur,² Marie Perceval,³ and Isabelle Durieu²

1 Rheonova, Grenoble, France, contact@rheonova.fr; 2 CRML, Hospices Civils de Lyon, Hôpital Femme Mère Enfant, Lyon, France

Context

Sputum abnormal viscoelasticity causes cystic fibrosis (CF) patients difficulties to expectorate. To promote clearance, recombinant human deoxyribonuclease I (rhDNase) is often prescribed in its purified form (Dornase alpha) as it is expected to fluidise the mucus by selectively cleaving DNA. The mucolytic efficiency of rhDNase has been assessed,²⁻³ but neither sputum heterogeneity nor sample history were taken into consideration in previous investigations. The present study establishes a unified rheological protocol to validate in vitro the rheological effect of rhDNase on sputum.

1. Shak et al. Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum, **PNAS** 87, 9188 (1990)

Protocol

Sample Collection

CF patients Interrupt rhDNase treatment 48 h Spontaneous expectoration

> 1 mL sample; storage @ 4°C

Sample Preparation

Control: saline solution (control) rhDNase, 2 µg/mL - dilution in saline solution

Sputum is composed of highly viscoelastic mucus plugs included in a less viscoelastic matrix. This heterogeneity induces artefacts in rheology measurements.

French patent FR 2570108, filed 26 July 2012

Rheological Measurements

Rheology is the study of the flow of matter that exhibits a combination of elastic, viscous and plastic behaviours by combining elasticity and fluid mechanics.

- **In phase contribution:** $G' = \frac{\tau \cos \delta}{\gamma}$
- **Out of phase contribution:** $G'' = \frac{\tau \sin \delta}{\gamma}$
- **tan δ phase tangent** $\tan \delta = \frac{G''}{G'}$

G' and G'' a priori depend on frequency and exerted strain.

Reference values are taken in the linear regime (1 Hz, 1%) where this dependency is weak.

Results

In vitro addition of rhDNase:

- Significantly reduces the elastic modulus G' by 43% (N = 27, $p = 0.01$).
- Likely reduces the viscous modulus G'' by 35% (N = 32, $p = 0.02$).
- Does not significantly affect the phase tangent (N = 23, $p = 0.22$).

Concluding Remarks

1. The thinning effect of rhDNase is retrieved by measuring in vitro the rheology of CF patients sputa. Our results are in line with those reported in highly heterogeneous sputum samples,²⁻³ suggesting that rhDNase likely affects both the mucus plugs and the embedding matrix in a similar way.

2. Elastic and viscous moduli are both reduced in comparable proportions. The sputum thins without globally becoming more liquid-like or gel-like.

Perspectives

The mechanism by which rhDNase promotes clearance remains unclear with in vitro testing. While we evidence a global thinning effect (reduction in both G' and G''), a proper fluidisation of the mucus would imply a significant increase in $\tan \delta$, modifying the gel-like structure. Further investigations would thus be necessary to better understand the mucolytic mechanism of action.